Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
نویسندگان
چکیده
Bromine gas was evaluated for converting elemental mercury (Hg0) to oxidized mercury, a form that can readily be captured by the existing air pollution control device. The gas-phase oxidation rates of Hg0 by Br2 decreased with increasing temperatures. SO2, CO, HCl, and H2O had insignificant effect, while NO exhibited a reverse course of effect on the Hg0 oxidation: promotion at low NO concentrations and inhibition at high NO concentrations. A reaction mechanism involving the formation of van der Waals clusters is proposed to accountfor NO's reverse effect. The apparent gas-phase oxidation rate constant, obtained under conditions simulating a flue gas without flyash, was 3.61 x 10(-17) cm3 x molecule(-1) x s(-1) at 410 K corresponding to a 50% Hg0 oxidation using 52 ppm Br2 in a reaction time of 15 s. Flyash in flue gas significantly promoted the oxidation of Hg0 by Br2, and the unburned carbon component played a major role in the promotion primarily through the rapid adsorption of Br2 which effectively removed Hg0 from the gas phase. At a typical flue gas temperature, SO2 slightly inhibited the flyash-induced Hg0 removal. Conversely, NO slightly promoted the flyash induced Hg0 removal by Br2. Norit Darco-Hg-LH and Darco-Hg powder activated carbons, which have been demonstrated in field tests, were inferred for estimating the flyash induced Hg0 oxidation by Br2. Approximately 60% of Hg0 is estimated to be oxidized with the addition of 0.4 ppm of gaseous Br2 into full scale power plant flue gas.
منابع مشابه
Assessment of Bias in Measurement of Mercury Emissions from Coal Fired Power Plants – Comparison of Electronic CEMS and Sorbent Traps
Mercury emissions from coal fired power plants are generally measured using one of two methods electronic Continuous Emission Monitoring Systems (Hg CEMS) that most commonly use atomic fluorescence, or sorbent traps. Electronic Hg CEMS are often compared against sorbent traps using EPA’s Method 30B Relative Accuracy Test Audit (RATA). Because sorbent traps include mercury contained in the parti...
متن کاملMercury Control Alternatives for Coal-fired Power Plants
Coal-fired power plants in the United States may have to reduce their mercury emissions by up to 90% by 2007 2009 due to proposed regulations that could affect up to 1,100 utility boilers. Air pollution control system components such as electrostatic precipitators, baghouses, NOx reduction catalysts, SO2 scrubbers, and their various configurations in utility applications significantly impact me...
متن کاملEvaluation of the Effect of SCR NOx Control Technology on Mercury Speciation
The U.S. Environmental Protection Agency (EPA) performed an Information Collection Request (ICR) in 1999 to gather additional information on the control and emission of mercury from coal-fired power plants. The ICR data indicates that a significant, but highly variable, amount of mercury removal can occur across a power plant’s conventional air pollution control (APC) equipment used for the cap...
متن کاملMercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies
Addition of halogens or halides has been reported to promote mercury removal in coal-fired power plants. In this study, benchand pilot-scale experiments were conducted using potassium iodide (KI) for capture and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packedbed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reac...
متن کاملAtomistic-Level Models
Understanding the speciation of mercury throughout the coal-combustion process is crucial to the design of efficient and effective mercury removal technologies. Mercury oxidation takes place through combined homogeneous (i.e., strictly in the gas phase) and heterogeneous (i.e., gas–surface interactions) pathways. Both bench-scale combustion experiments [1] and quantumchemistry-based theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2007